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Introduction: Synthetic oscillators based on transcriptional regulators have received a lot of 

attention over last decade1, 2. The motivations for this have been twofold: a) to understand the 

building blocks of time keeping, such as the circadian rhythm, pervasive in natural organisms, and 

b) as control blocks in applications such as bacterial lysis for in vivo drug delivery3. Over time, the 

precision in oscillation time scales and synchronization across large cell populations have been 

improved both spatially and temporally4, 5. This was achieved by improving the speed of coupling 

using a shared post-translational coupling based on ClpXP protease degradation. While 

synchronized oscillators have been demonstrated, quorum of cells have not been used to perform 

coherent computations. In parallel, in the broad field of computing, interest in arrays of coupled 

oscillators with tunable coupling has grown based on their superior performance in pattern 

recognition and associative memory applications6. Theoretical proposals for such oscillatory 

systems exist7, but practical demonstrations have not been possible with challenges in large scale 

oscillator coupling. 

The main objective of the project is to explore pattern recognition abilities of synchronized quorum 

of cells and understand convergence behavior of the oscillator networks. The oscillator network is 

simulated by developing a framework for solving delay-differential equations in MATLAB in time 

domain, as a 2D interconnected array of spatially coupled oscillators. Two different oscillator 

network topologies are compared and it is shown that a 4 element array demonstrates abilities to 

memorize patterns, even in the presence of noise. The convergence behavior depends on the 

hamming distance between the input and the memorized pattern. 

Methods: The system described here consists of an array of synthetic oscillator cell colonies (Pi) 

each isolated in a physically defined well. The individual cells (E. coli) within a group Pi are fully 

coherent. Figure 1a shows an array of 4 cell populations. Each group is coupled with common cell 

population (shown in blue).  Based on the nature of spatial coupling of each cell with the common 

population, the phase relationship between each well can be controlled.  

  

Figure 1. a. Overview of the coupled oscillators, a sample pattern to be recognized and the corresponding steady 

state oscillations of the cell groups where the relative phase denotes the information in the pattern to be recognized. 

b. The regulatory network inside each cell (based on reference 8) and the general physical configuration of cell 

colonies. 



When all the cells are coupled uniformly, the oscillations are synchronized. When the coupling 

distance is increased, out-of-phase coupling can be achieved. The relative phase between the 

oscillators corresponds to the data in each individual pixel of the pattern to be recognized as shown 

in the right. Here, the white pixels are all in-phase (0°) but the black pixel is out-of-phase (180°) 

with the other pixels. The oscillations on the bottom show the converged states. The pattern to be 

matched is input as the initial phase to the respective cell group, where the time it takes to converge 

to the steady state is expected to give the hamming distance between the input pattern and the 

pattern to be recognized. 

The array of cell groups (Pi) are built using a setup similar to the work of Prindle et al.8 where two 

hierarchies of coupling exist: short range but strong coupling (with AHL) and a longer range but 

weak coupling (with H2O2). The oscillation transcriptional network is shown in Figure 1b. It is 

assumed that LuxR is constitutively expressed here and that the expression of AHL is directly 

driven by the LuxI concentration. The LuxR-AHL hybrid controls the expression of LuxI, aiiA, 

ndh and GFP from four identical modules. Each of the cell colonies (Pi) consists of these cells with 

the oscillation-coupling network shown in the diagram. The colonies are isolated into PDMS wells 

with varying distance between them. The inter colony distance controls the in-phase/out-of-phase 

synchronization between the colonies with respect to the larger common reference population. 

There is no AHL diffusion between the individual cell colonies through the PDMS membranes 

since inter colony communication is primarily via gas phase. In this system, NDH-2 is a respiratory 

enzyme that is bound to the membrane that produces H2O2. H2O2 permeates through the PDMS 

layer and inactivates the ArcAB which normally represses the expression of LuxI.  

Initialization of phase in an array of oscillators is one of the key challenges in all practical 

demonstrations of synchronized oscillators. Here we overcome that by using high intensity blue 

light for this purpose. When high intensity blue light is turned on, the GFP acts as a photosensitizer 

and releases free radicals that produce reactive oxygen species including H2O2. When the 

concentration of H2O2 is high the fluorescence remains in the high state and the oscillations are 

stopped. Using a digital logic projector (DLP), blue light can be individually turned on or off at 

each of the colonies, presenting a potential for easy large scale initialization of patterns. The time 

taken by the oscillator network after initialization to converge to the steady state phase differences, 

is set by the configuration of the PDMS well (and the well spacing). 

The model is governed by the following kinetics5, 8 : 

k1: LuxI  →AHLin 

: AiiA ───│AHLin 

Kf/kb: AHLin + LuxR  ←→ LuxR: AHLin + LuxR 

k2: LuxR: AHLin → AiiA  LuxR: AHLin → LuxI 

kda:  AiiA →  LuxI → 

Transport processes: 

Dilution of AHLout by flow,  kd:  AHLout → 

Fick’s diffusion of AHLout, D2 



Convection of AHL between interior and exterior, D1: AHLout ←→ AHLin 

 

Oscillator governing equations: 
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The above equations govern the bulk oscillator performance under the following assumptions: 

1. LuxR is expressed constitutively and the concentration of LuxR is significantly high such that 

the kinetics of AHLin:LuxR formations are rapid and solely depend on AHLin concentration. 

2. The degradation of AHLin can be ignored since the convection of AHL from the exterior and 

the repression of AHL by AiiA are bound to be dominant. 

3. The local synchronization within a cell colony is not affected by H2O2 coupling 

4. The direct coupling between H2O2 from two adjacent colonies is ignored and the primary mode 

of coupling is assumed to be between each colony and the common reference pool. This is 

reasonable since the distance between two colonies is typically significantly larger than the 

distance between a colony and the reference cell pool. 

The parameters for oscillations in an individual colony can be optimized easily with the system of 

ODEs described above, but including spatial diffusion terms is computationally expensive.  

To model the spatio-temporal interactions which are critical to model the oscillatory network, 

delay-differential equations are used as replacements; these have been found to effectively capture 

the oscillator dynamics in prior reports9, 8. In order to account for the coupling between different 

spatial colonies, a simplified model8 is made accounting for colony averaged LuxI concentrations 

(Xi), based on delayed auto repression of LuxI and delayed activation by H2O2 concentration (Hi) 
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Where the subscripts 1, and 2 show delayed responses, for e.g., Hi,2(t)=Hi(t-2). The main 

parameters here are  and  which model the effectiveness of the delayed activation by H2O2 and 

the degradation of LuxI. C0 and k allow control of the delayed auto repression by LuxI and the size 

of the cell colony. The H2O2 concentration in each colony can be described by 
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F{Hi} denotes the effective flux of H2O2 diffusing in and out of each colony from the central 

reference cell population and the external sinks, and is described by the discretized version of the 

diffusion equation (j are all the neighboring entities) 
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where D is the diffusion coefficient for the diffusion of H2O2 through the membrane.  

Results:  

Note that to solve the new system of equations (5)-(7), considering the diffusion terms in time and 

space, the Parts and Compositors framework cannot be used. A new MATLAB framework is 

developed with delay-differential equations solvers to test the oscillators and the network 

topologies. The parameters used for the simulations are obtained from Prindle et al.8 and modified 

to obtain the desired behavior. Typically  = 8.25,   = 5.75,   = 1, 1 = 20, 2 = 10, c0 = 6, k = 10,  = 

20, h = 1, h = 10, D = 7, di = 1 is used. Noise is introduced in the system by adding up to ± 0.25 to  

and  of each oscillator randomly. This corresponds to activation and degradation noise. 

To test the individual oscillators, the above system is setup initially as a 1D oscillator connected 

to 0 concentration sinks at distance di on each side as shown in the inset in figure 2a. The buildup 

of oscillations is shown in figure 2b. As the distance to the sink is increased from 1 to 1.5, the 

oscillation time period increases as does the amplitude, as expected. This is because as the distance 

(or wall thickness) increases, the amount of H2O2 diffusing out decreases. The Fourier transform 

of the oscillation signals is shown in figure 2a. 

 

Figure 2. a. Fourier transform of the oscillation signals, and time evolution of the fluorescence in b. The inset in a 

shows the diffusion model for single oscillators. c. A 4 oscillator network connected to an infinite (or bulky) reference 

oscillator. The box in the bottom shows the 1D diffusion model used for each oscillator colony Pi. d. The oscillations 

in 4 colonies where one colony (P2) is spaced far away (d2 = 1.5) from the reference oscillator colony. 



 

Figure 3. a. 4 oscillator array topology connected to a finite reference. The H2O2 concentrations from the neighbors 

Pi diffuse into the reference and affect the reference colony. b. The box shows the 2D discrete-diffusion model used 

in the simulations for each Hi and Href. c. The oscillations in a network with d = {0.75, 2, 0.75, 0.75} stores the bit 

pattern ‘b0100’. When initialized with different inputs ‘b1000’, ‘b0100’, ‘b0010’ and ‘b0001’, the convergence times 

depend on the hamming distances to the memorized pattern, in this case, 2, 0, 2 and 2. d. The fluorescence in each 

pixel as a function of time (minutes) showing the 4 different initialization cases. In all cases the stable memorized 

pattern ‘b0100’ is reached.  

To test of the possibility of making interconnected oscillator networks, 4 oscillators are coupled to 

a bulky or an infinite reference as shown in Figure 2c. Each of the 4 oscillator colonies can be 

modeled by a 1D diffusion system as shown in the box, as the bulky reference is large enough to 

be influence by the H2O2 diffusion from the individual oscillators Pi. When the system is setup 

with all distances di being the same except for d2, the phase starts to deviate initially but the bulky 

reference overpowers the P2 into synchrony with the other oscillators as shown in Figure 2d. 

Improving the distance from the bulky reference did not lead to a stable phase offset as required. 

The topology was modified into a network of oscillators shown in Figure 3a. In this case the 

reference oscillator is similar to all the individual colonies and stable phase offsets could be 

obtained even in the presence of noise. To memorize ‘b0100’ the distances were set to d = {0.75, 

2, 0.75, 0.75}. Since the reference is influenced by the H2O2 diffusing from its neighbors, a 2D- 

diffusion model is required, as shown in Figure 3b. When the individual oscillators are initialized 

to ‘b1000’, ‘b0100’, ‘b0010’ and ‘b0001’, in all cases, the system converges to the memorized 

state, ‘b0100’ as shown in Figure 3c. The hamming distance for input ‘b0100’ is 0, while it is 2 



for the other three cases. It is evident that the oscillations build up faster in the case of a ‘b0100’ 

initialization, demonstrating that convergence times depend on hamming distances even when the 

amount of H2O2 introduced in the system is equal in each case. Figure 4d shows the fluorescence 

intensities generated in these 4 runs with different initialization, as a function of time. At t = 0, the 

2 × 2 array is initialized differently but reaches the same state by t = 425 min in all cases. 

This work shows that coupled synthetic oscillators can be used in applications where independent 

oscillator colonies cooperatively work towards pattern recognition tasks even when noise is taken 

in to consideration. When patterns are initialized with blue light (leading to high H2O2 generation), 

the convergence behavior shows a relationship to the hamming distance between the input code 

and the memorized pattern. There are several directions to enhance this study. It is important to 

investigate larger arrays of oscillators, which at the same time also enables exploring more 

complex network topologies. Large scale quantitative studies of convergence behavior with 

several inputs of varying hamming distances, accounting for noise at multiple stages would be 

interesting to explore. These results may then provide a compelling case for experimental 

implementations of these interconnected oscillatory networks made of synthetic cell oscillators.  

 

References: 

1. Elowitz, M. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 

335-338 (2000). 

2. Potvin-Trottier, L., Lord, N., Vinnicombe, G. & Paulsson, J. Synchronous long-term oscillations in a 

synthetic gene circuit. Nature 538, 514-517 (2016). 

3. Din, M. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81-85 (2016). 

4. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic 

clocks. Nature 463, 326-330 (2010). 

5. Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508, 387-

391 (2014). 

6. Hoppensteadt, F. & Izhikevich, E. Oscillatory Neurocomputers with Dynamic Connectivity. Physical 

Review Letters 82, 2983-2986 (1999). 

7. Fang, Y., Yashin, V., Levitan, S. & Balazs, A. Pattern recognition with "materials that compute". 

Science Advances 2, e1601114-e1601114 (2016). 

8. Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39-44 (2011). 

9. Mather, W., Bennett, M., Hasty, J. & Tsimring, L. Delay-Induced Degrade-and-Fire Oscillations in 

Small Genetic Circuits. Physical Review Letters 102, (2009). 


